#include <bkz_param.h>
|
| BKZParam (int block_size, vector< Strategy > &strategies, double delta=LLL_DEF_DELTA, int flags=BKZ_DEFAULT, int max_loops=0, double max_time=0, double auto_abort_scale=BKZ_DEF_AUTO_ABORT_SCALE, int auto_abort_max_no_dec=BKZ_DEF_AUTO_ABORT_MAX_NO_DEC, double gh_factor=BKZ_DEF_GH_FACTOR, double min_success_probability=BKZ_DEF_MIN_SUCCESS_PROBABILITY, int rerandomization_density=BKZ_DEF_RERANDOMIZATION_DENSITY) |
| Create BKZ parameters. More...
|
|
◆ BKZParam()
BKZParam::BKZParam |
( |
int |
block_size, |
|
|
vector< Strategy > & |
strategies, |
|
|
double |
delta = LLL_DEF_DELTA , |
|
|
int |
flags = BKZ_DEFAULT , |
|
|
int |
max_loops = 0 , |
|
|
double |
max_time = 0 , |
|
|
double |
auto_abort_scale = BKZ_DEF_AUTO_ABORT_SCALE , |
|
|
int |
auto_abort_max_no_dec = BKZ_DEF_AUTO_ABORT_MAX_NO_DEC , |
|
|
double |
gh_factor = BKZ_DEF_GH_FACTOR , |
|
|
double |
min_success_probability = BKZ_DEF_MIN_SUCCESS_PROBABILITY , |
|
|
int |
rerandomization_density = BKZ_DEF_RERANDOMIZATION_DENSITY |
|
) |
| |
|
inline |
Create BKZ parameters.
- Parameters
-
block_size | block size for the reduction |
strategies | vector of strategies used for pruning and preprocessing |
delta | LLL parameter delta |
flags | various flags that can be arbitrarily combined (using |):
- BKZ_VERBOSE print additional information during reduction
- BKZ_NO_LLL do not run LLL before block reduction (use at your own risk)
- BKZ_MAX_LOOPS terminate after max_loops iterations
- BKZ_MAX_TIME terminate after max_time time
- BKZ_BOUNDED_LLL only run LLL in current block during SVP preprocessing (use at your own risk)
- BKZ_AUTO_ABORT heuristically terminate the reduction if progress stalls
- BKZ_DUMP_GSO after every iteration write the shape of the current basis to a file
- BKZ_GH_BND use the Gaussian heuristic to reduce the enumeration bound of possible
- BKZ_SD_VARIANT run SD-BKZ
- BKZ_SLD_RED run slide reduction
|
max_loops | maximum number of loops (or zero to disable this) |
max_time | maximum number of time (or zero to disable this) |
auto_abort_scale | auto abort when next tour does not improve slope over scale * previous tour |
auto_abort_max_no_dec | auto abort when next tour does not improve slope no_dec times |
gh_factor | set enumeration bound to Gaussian heuristic times gh_factor |
min_success_probability | minimum success probability in an SVP reduction (when using pruning) |
rerandomization_density | the heavier rerandomization, the better our guarantees and costs |
◆ auto_abort_max_no_dec
int BKZParam::auto_abort_max_no_dec |
◆ auto_abort_scale
double BKZParam::auto_abort_scale |
If BKZ_AUTOABORT is set, We abort if new_slope < auto_abort_scale * old_slope
is true for auto_abort_max_no_dec
loops.
◆ block_size
Block size used for enumeration
◆ delta
◆ dump_gso_filename
string BKZParam::dump_gso_filename |
If BKZ_DUMP_GSO is set, the norms of the GSO matrix are written to this file after each complete round.
◆ flags
◆ gh_factor
double BKZParam::gh_factor |
If BKZ_GH_BND is set, the enumeration bound will be set to gh_factor times the Gaussian Heuristic
◆ max_loops
Maximum number of loops to execute
◆ max_time
double BKZParam::max_time |
◆ min_success_probability
double BKZParam::min_success_probability |
minimum success probability when using extreme pruning
◆ rerandomization_density
int BKZParam::rerandomization_density |
density of rerandomization operation when using extreme pruning
◆ strategies
Strategies (pruning coefficients, preprocessing)
The documentation for this class was generated from the following file: