MatGSO< ZT, FT > Class Template Reference

#include <gso.h>

Public Member Functions

 MatGSO (Matrix< ZT > &arg_b, Matrix< ZT > &arg_u, Matrix< ZT > &arg_uinv_t, int flags)
 
virtual ZT & sqnorm_coordinates (ZT &sqnorm, vector< ZT > coordinates)
 
virtual long get_max_exp_of_b ()
 
virtual bool b_row_is_zero (int i)
 
virtual int get_cols_of_b () const
 
virtual int get_rows_of_b () const
 
virtual void negate_row_of_b (int i)
 
virtual void create_rows (int n_new_rows)
 
virtual void remove_last_rows (int n_removed_rows)
 
virtual void move_row (int old_r, int new_r)
 
virtual void row_addmul_we (int i, int j, const FT &x, long expo_add)
 
virtual void row_add (int i, int j)
 
virtual void row_sub (int i, int j)
 
virtual FT & get_gram (FT &f, int i, int j)
 
virtual ZT & get_int_gram (ZT &z, int i, int j)
 
virtual void row_swap (int i, int j)
 
void to_canonical (vector< FT > &w, const vector< FT > &v, long start=0)
 
void from_canonical (vector< FT > &v, const vector< FT > &w, long start=0, long dimension=-1)
 
virtual void babai (vector< ZT > &v, int start=0, int dimension=-1, bool gso=false)
 
virtual void babai (vector< ZT > &w, const vector< FT > &v, int start=0, int dimension=-1, bool gso=false)
 
- Public Member Functions inherited from MatGSOInterface< ZT, FT >
virtual ~MatGSOInterface ()
 
 MatGSOInterface (Matrix< ZT > &arg_u, Matrix< ZT > &arg_uinv_t, int flags)
 
virtual ZT & sqnorm_coordinates (ZT &sqnorm, vector< ZT > coordinates)=0
 
virtual long get_max_exp_of_b ()=0
 
virtual bool b_row_is_zero (int i)=0
 
virtual int get_cols_of_b () const =0
 
virtual int get_rows_of_b () const =0
 
virtual void negate_row_of_b (int i)=0
 
void row_op_begin (int first, int last)
 
void row_op_end (int first, int last)
 
virtual FT & get_gram (FT &f, int i, int j)=0
 
virtual ZT & get_int_gram (ZT &z, int i, int j)=0
 
const Matrix< FT > & get_mu_matrix () const
 
const Matrix< FT > & get_r_matrix () const
 
const Matrix< ZT > & get_g_matrix () const
 
const FT & get_mu_exp (int i, int j, long &expo) const
 
const FT & get_mu_exp (int i, int j) const
 
FT & get_mu (FT &f, int i, int j)
 
ZT get_max_gram ()
 
FT get_max_bstar ()
 
const FT & get_r_exp (int i, int j, long &expo) const
 
const FT & get_r_exp (int i, int j) const
 
FT & get_r (FT &f, int i, int j)
 
long get_max_mu_exp (int i, int n_columns)
 
bool update_gso_row (int i, int last_j)
 
bool update_gso_row (int i)
 
bool update_gso ()
 
void discover_all_rows ()
 
void set_r (int i, int j, FT &f)
 
virtual void move_row (int old_r, int new_r)=0
 
virtual void row_addmul (int i, int j, const FT &x)
 
virtual void row_addmul_we (int i, int j, const FT &x, long expo_add)=0
 
virtual void row_add (int i, int j)=0
 
virtual void row_sub (int i, int j)=0
 
void lock_cols ()
 
void unlock_cols ()
 
void create_row ()
 
virtual void create_rows (int n_new_rows)=0
 
void remove_last_row ()
 
virtual void remove_last_rows (int n_removed_rows)=0
 
void apply_transform (const Matrix< FT > &transform, int src_base, int target_base)
 
void apply_transform (const Matrix< FT > &transform, int src_base)
 
void dump_mu_d (double *mu, int offset=0, int block_size=-1)
 
void dump_mu_d (vector< double > mu, int offset=0, int block_size=-1)
 
void dump_r_d (double *r, int offset=0, int block_size=-1)
 
void dump_r_d (vector< double > &r, int offset=0, int block_size=-1)
 
double get_current_slope (int start_row, int stop_row)
 Return slope of the curve fitted to the lengths of the vectors from start_row to stop_row. More...
 
FT get_root_det (int start_row, int end_row)
 Return (squared) root determinant of the basis. More...
 
FT get_log_det (int start_row, int end_row)
 Return log of the (squared) determinant of the basis. More...
 
FT get_slide_potential (int start_row, int end_row, int block_size)
 Return slide potential of the basis. More...
 
void print_mu_r_g (ostream &os)
 
virtual void babai (vector< ZT > &v, int start=0, int dimension=-1)
 
virtual void babai (vector< ZT > &w, const vector< FT > &v, int start=0, int dimension=1)
 
void symmetrize_g ()
 
virtual void row_swap (int i, int j)=0
 

Data Fields

Matrix< ZT > & b
 
Matrix< ZT > g
 
- Data Fields inherited from MatGSOInterface< ZT, FT >
int d
 
vector< long > row_expo
 
const bool enable_int_gram
 
const bool enable_row_expo
 
const bool enable_transform
 
const bool enable_inverse_transform
 
const bool row_op_force_long
 
Matrix< ZT > * gptr
 

Additional Inherited Members

- Protected Member Functions inherited from MatGSOInterface< ZT, FT >
virtual void size_increased ()=0
 
virtual void discover_row ()=0
 
void invalidate_gso_row (int i, int new_valid_cols=0)
 
virtual void update_bf (int i)=0
 
virtual void invalidate_gram_row (int i)=0
 
virtual void row_addmul_si (int i, int j, long x)=0
 
ZT & sym_g (int i, int j)
 
- Protected Attributes inherited from MatGSOInterface< ZT, FT >
Matrix< FT > bf
 
Matrix< ZT > & u
 
Matrix< ZT > & u_inv_t
 
vector< int > init_row_size
 
int n_known_rows
 
int n_source_rows
 
int n_known_cols
 
bool cols_locked
 
int alloc_dim
 
Matrix< FT > mu
 
Matrix< FT > r
 
Matrix< FT > gf
 
vector< int > gso_valid_cols
 
FT ftmp1
 
FT ftmp2
 
ZT ztmp1
 
ZT ztmp2
 
vector< long > tmp_col_expo
 

Detailed Description

template<class ZT, class FT>
class MatGSO< ZT, FT >

MatGSO provides an interface for performing elementary operations on a basis and computing its Gram matrix and its Gram-Schmidt orthogonalization. The Gram-Schmidt coefficients are computed on demand. The object keeps track of which coefficients are valid after each row operation.

Constructor & Destructor Documentation

◆ MatGSO()

template<class ZT , class FT >
MatGSO< ZT, FT >::MatGSO ( Matrix< ZT > &  arg_b,
Matrix< ZT > &  arg_u,
Matrix< ZT > &  arg_uinv_t,
int  flags 
)
inline

Constructor. The precision of FT must be defined before creating an instance of the class and must remain the same until the object is destroyed (or no longer needed).

Parameters
bThe matrix on which row operations are performed. It must not be empty.
uIf u is not empty, operations on b are also done on u (in this case both must have the same number of rows). If u is initially the identity matrix, multiplying transform by the initial basis gives the current basis.
u_inv_tInverse transform (should be empty, which disables the computation, or initialized with identity matrix). It works only if u is not empty.
enable_int_gramIf true, coefficients of the Gram matrix are computed with exact integer arithmetic (type ZT). Otherwise, they are computed in floating-point (type FT). Note that when exact arithmetic is used, all coefficients of the first n_known_rows are continuously updated, whereas in floating-point, they are computed only on-demand. This option cannot be enabled if enable_row_expo=true.
enable_row_expoIf true, each row of b is normalized by a power of 2 before doing conversion to floating-point, which hopefully avoids some overflows. This option cannot be enabled if enable_int_gram=true and works only with FT=double and FT=long double. It is useless and MUST NOT be used for FT=dpe or FT=mpfr_t.
row_op_force_longAffects the behaviour of row_addmul(_we). See the documentation of row_addmul.

Member Function Documentation

◆ b_row_is_zero()

template<class ZT , class FT >
bool MatGSO< ZT, FT >::b_row_is_zero ( int  i)
inlinevirtual

Returns true if the ith row of b is zero. In the gram version it returns true if g(i,i) is zero.

Implements MatGSOInterface< ZT, FT >.

◆ babai() [1/2]

template<class ZT , class FT >
void MatGSO< ZT, FT >::babai ( vector< ZT > &  v,
int  start = 0,
int  dimension = -1,
bool  gso = false 
)
virtual

Updatev to w s.t. ‖w⋅B - v‖ is small using Babai's nearest plane algorithm.

Parameters
va vector
startonly consider subbasis starting at start
dimensiononly consider dimension vectors or all if -1
gsoif true then input v is considered to be expressed to B*

◆ babai() [2/2]

template<class ZT , class FT >
void MatGSO< ZT, FT >::babai ( vector< ZT > &  w,
const vector< FT > &  v,
int  start = 0,
int  dimension = -1,
bool  gso = false 
)
virtual

Return vector w s.t. ‖w⋅B - v‖ is small using Babai's nearest plane algorithm.

Parameters
wa vector
va vector
startonly consider subbasis starting at start
dimensiononly consider dimension vectors or all if -1
gsoif true then input v is considered to be expressed wrt B*

◆ create_rows()

template<class ZT , class FT >
void MatGSO< ZT, FT >::create_rows ( int  n_new_rows)
inlinevirtual

◆ from_canonical()

template<class ZT , class FT >
void MatGSO< ZT, FT >::from_canonical ( vector< FT > &  v,
const vector< FT > &  w,
long  start = 0,
long  dimension = -1 
)

Given a vector w wrt the canonical basis ZZ^n return a vector v wrt the Gram-Schmidt basis B^*.

Parameters
va tuple-like object of dimension M.B.ncols
startonly consider subbasis starting at start
dimensiononly consider dimension vectors or all if -1

◆ get_cols_of_b()

template<class ZT , class FT >
int MatGSO< ZT, FT >::get_cols_of_b ( ) const
inlinevirtual

Returns number of columns of b. In the gram version it returns the number of columns of g.

Implements MatGSOInterface< ZT, FT >.

◆ get_gram()

template<class ZT , class FT >
FT & MatGSO< ZT, FT >::get_gram ( FT &  f,
int  i,
int  j 
)
inlinevirtual

Returns Gram matrix coefficients (0 <= i < n_known_rows and 0 <= j <= i). If enable_row_expo=false, returns the dot product (b[i], b[j]). If enable_row_expo=true, returns (b[i], b[j]) / 2 ^ (row_expo[i] + row_expo[j]).

Returns reference to f.

Implements MatGSOInterface< ZT, FT >.

◆ get_int_gram()

template<class ZT , class FT >
ZT & MatGSO< ZT, FT >::get_int_gram ( ZT &  z,
int  i,
int  j 
)
inlinevirtual

Returns integer Gram matrix coefficients (0 <= i < n_known_rows and 0 <= j <= i). If (enable_int_gram = true), it returns the i,j-th coordinate of the Gram matrix else it computes the inner product of b_i and b_j Returns reference to z.

Implements MatGSOInterface< ZT, FT >.

◆ get_max_exp_of_b()

template<class ZT , class FT >
long MatGSO< ZT, FT >::get_max_exp_of_b ( )
inlinevirtual

Returns maximum exponent of b. In the gram version it returns a half times the maximum exponent of g.

Implements MatGSOInterface< ZT, FT >.

◆ get_rows_of_b()

template<class ZT , class FT >
int MatGSO< ZT, FT >::get_rows_of_b ( ) const
inlinevirtual

Returns number of rows of b. In the gram version it returns the number of of rows of g. This function is made to reduce code repetition (dump_mu/dump_r)

Implements MatGSOInterface< ZT, FT >.

◆ move_row()

template<class ZT , class FT >
void MatGSO< ZT, FT >::move_row ( int  old_r,
int  new_r 
)
virtual

Row old_r becomes row new_r and intermediate rows are shifted. If new_r < old_r, then old_r must be < n_known_rows.

Implements MatGSOInterface< ZT, FT >.

◆ negate_row_of_b()

template<class ZT , class FT >
void MatGSO< ZT, FT >::negate_row_of_b ( int  i)
inlinevirtual

Negates the ith row of b. Needed by dbkz_postprocessing.

Implements MatGSOInterface< ZT, FT >.

◆ remove_last_rows()

template<class ZT , class FT >
void MatGSO< ZT, FT >::remove_last_rows ( int  n_removed_rows)
inlinevirtual

◆ row_add()

template<class ZT , class FT >
void MatGSO< ZT, FT >::row_add ( int  i,
int  j 
)
virtual

◆ row_addmul_we()

template<class ZT , class FT >
void MatGSO< ZT, FT >::row_addmul_we ( int  i,
int  j,
const FT &  x,
long  expo_add 
)
virtual

b[i] := b[i] + x * b[j]. After one or several calls to row_addmul, row_op_end must be called. Special cases |x| <= 1 and |x| <= LONG_MAX are optimized. x should be an integer. If row_op_force_long=true, x is always converted to (2^expo * long) instead of (2^expo * ZT), which is faster if ZT=mpz_t but might lead to a loss of precision (in LLL, more Babai iterations are needed). b[i] := b[i] + x * 2^expo_add * b[j]. After one or several calls to row_addmul_we, row_op_end must be called. Special cases |x| <= 1 and |x| <= LONG_MAX are optimized. x should be an integer. If row_op_force_long=true, x is always converted to (2^expo * long) instead of (2^expo * ZT), which is faster if ZT=mpz_t but might lead to a loss of precision (in LLL, more Babai iterations are needed).

Implements MatGSOInterface< ZT, FT >.

◆ row_sub()

template<class ZT , class FT >
void MatGSO< ZT, FT >::row_sub ( int  i,
int  j 
)
virtual

◆ row_swap()

template<class ZT , class FT >
void MatGSO< ZT, FT >::row_swap ( int  i,
int  j 
)
virtual

◆ sqnorm_coordinates()

template<class ZT , class FT >
ZT & MatGSO< ZT, FT >::sqnorm_coordinates ( ZT &  sqnorm,
vector< ZT >  coordinates 
)
inlinevirtual

Basis of the lattice The next five functions make calls from lll.cpp and bkz.cpp indirect. Returns || sum_i x_i b_i ||^2 on vectorial input (x_i)_i in the Gram version, it returns x^T G x

Implements MatGSOInterface< ZT, FT >.

◆ to_canonical()

template<class ZT , class FT >
void MatGSO< ZT, FT >::to_canonical ( vector< FT > &  w,
const vector< FT > &  v,
long  start = 0 
)

Given a vector v wrt the Gram-Schmidt basis B^* return a vector w wrt the canonical basis ZZ^n, i.e. solve w = v⋅B^*.

Parameters
va tuple-like object of dimension M.d
startonly consider subbasis starting at start

Field Documentation

◆ b

template<class ZT , class FT >
Matrix<ZT>& MatGSO< ZT, FT >::b

Basis of the lattice

◆ g

template<class ZT , class FT >
Matrix<ZT> MatGSO< ZT, FT >::g

Integer Gram matrix of the lattice


The documentation for this class was generated from the following files: