MatGSOInterface< ZT, FT > Class Template Referenceabstract

#include <gso_interface.h>

Public Member Functions

virtual ~MatGSOInterface ()
 
 MatGSOInterface (Matrix< ZT > &arg_u, Matrix< ZT > &arg_uinv_t, int flags)
 
virtual ZT & sqnorm_coordinates (ZT &sqnorm, vector< ZT > coordinates)=0
 
virtual long get_max_exp_of_b ()=0
 
virtual bool b_row_is_zero (int i)=0
 
virtual int get_cols_of_b () const =0
 
virtual int get_rows_of_b () const =0
 
virtual void negate_row_of_b (int i)=0
 
void row_op_begin (int first, int last)
 
void row_op_end (int first, int last)
 
virtual FT & get_gram (FT &f, int i, int j)=0
 
virtual ZT & get_int_gram (ZT &z, int i, int j)=0
 
const Matrix< FT > & get_mu_matrix () const
 
const Matrix< FT > & get_r_matrix () const
 
const Matrix< ZT > & get_g_matrix () const
 
const FT & get_mu_exp (int i, int j, long &expo) const
 
const FT & get_mu_exp (int i, int j) const
 
FT & get_mu (FT &f, int i, int j)
 
ZT get_max_gram ()
 
FT get_max_bstar ()
 
const FT & get_r_exp (int i, int j, long &expo) const
 
const FT & get_r_exp (int i, int j) const
 
FT & get_r (FT &f, int i, int j)
 
long get_max_mu_exp (int i, int n_columns)
 
bool update_gso_row (int i, int last_j)
 
bool update_gso_row (int i)
 
bool update_gso ()
 
void discover_all_rows ()
 
void set_r (int i, int j, FT &f)
 
virtual void move_row (int old_r, int new_r)=0
 
virtual void row_addmul (int i, int j, const FT &x)
 
virtual void row_addmul_we (int i, int j, const FT &x, long expo_add)=0
 
virtual void row_add (int i, int j)=0
 
virtual void row_sub (int i, int j)=0
 
void lock_cols ()
 
void unlock_cols ()
 
void create_row ()
 
virtual void create_rows (int n_new_rows)=0
 
void remove_last_row ()
 
virtual void remove_last_rows (int n_removed_rows)=0
 
void apply_transform (const Matrix< FT > &transform, int src_base, int target_base)
 
void apply_transform (const Matrix< FT > &transform, int src_base)
 
void dump_mu_d (double *mu, int offset=0, int block_size=-1)
 
void dump_mu_d (vector< double > mu, int offset=0, int block_size=-1)
 
void dump_r_d (double *r, int offset=0, int block_size=-1)
 
void dump_r_d (vector< double > &r, int offset=0, int block_size=-1)
 
double get_current_slope (int start_row, int stop_row)
 Return slope of the curve fitted to the lengths of the vectors from start_row to stop_row. More...
 
FT get_root_det (int start_row, int end_row)
 Return (squared) root determinant of the basis. More...
 
FT get_log_det (int start_row, int end_row)
 Return log of the (squared) determinant of the basis. More...
 
FT get_slide_potential (int start_row, int end_row, int block_size)
 Return slide potential of the basis. More...
 
void print_mu_r_g (ostream &os)
 
virtual void babai (vector< ZT > &v, int start=0, int dimension=-1)
 
virtual void babai (vector< ZT > &w, const vector< FT > &v, int start=0, int dimension=1)
 
void symmetrize_g ()
 
virtual void row_swap (int i, int j)=0
 

Data Fields

int d
 
vector< long > row_expo
 
const bool enable_int_gram
 
const bool enable_row_expo
 
const bool enable_transform
 
const bool enable_inverse_transform
 
const bool row_op_force_long
 
Matrix< ZT > * gptr
 

Protected Member Functions

virtual void size_increased ()=0
 
virtual void discover_row ()=0
 
void invalidate_gso_row (int i, int new_valid_cols=0)
 
virtual void update_bf (int i)=0
 
virtual void invalidate_gram_row (int i)=0
 
virtual void row_addmul_si (int i, int j, long x)=0
 
ZT & sym_g (int i, int j)
 

Protected Attributes

Matrix< FT > bf
 
Matrix< ZT > & u
 
Matrix< ZT > & u_inv_t
 
vector< int > init_row_size
 
int n_known_rows
 
int n_source_rows
 
int n_known_cols
 
bool cols_locked
 
int alloc_dim
 
Matrix< FT > mu
 
Matrix< FT > r
 
Matrix< FT > gf
 
vector< int > gso_valid_cols
 
FT ftmp1
 
FT ftmp2
 
ZT ztmp1
 
ZT ztmp2
 
vector< long > tmp_col_expo
 

Detailed Description

template<class ZT, class FT>
class MatGSOInterface< ZT, FT >

MatGSOInterface provides an interface for performing elementary operations on a basis and computing its Gram matrix and its Gram-Schmidt orthogonalization. The Gram-Schmidt coefficients are computed on demand. The object keeps track of which coefficients are valid after each row operation.

Constructor & Destructor Documentation

◆ ~MatGSOInterface()

template<class ZT , class FT >
MatGSOInterface< ZT, FT >::~MatGSOInterface
inlinevirtual

Constructor. The precision of FT must be defined before creating an instance of the class and must remain the same until the object is destroyed (or no longer needed).

Parameters
bThe matrix on which row operations are performed. It must not be empty.
uIf u is not empty, operations on b are also done on u (in this case both must have the same number of rows). If u is initially the identity matrix, multiplying transform by the initial basis gives the current basis. In other words, u will contain the transformation matrix used on the basis b that was used to obtain the current basis.
u_inv_tInverse transform (should be empty, which disables the computation, or initialized with identity matrix). It works only if u is not empty.
enable_int_gramIf true, coefficients of the Gram matrix are computed with exact integer arithmetic (type ZT). Otherwise, they are computed in floating-point (type FT). Note that when exact arithmetic is used, all coefficients of the first n_known_rows are continuously updated, whereas in floating-point, they are computed only on-demand. This option cannot be enabled if enable_row_expo=true.
enable_row_expoIf true, each row of b is normalized by a power of 2 before doing conversion to floating-point, which hopefully avoids some overflows. This option cannot be enabled if enable_int_gram=true and works only with FT=double and FT=long double. It is useless and MUST NOT be used for FT=dpe or FT=mpfr_t.
row_op_force_longAffects the behaviour of row_addmul(_we). See the documentation of row_addmul.

◆ MatGSOInterface()

template<class ZT , class FT >
MatGSOInterface< ZT, FT >::MatGSOInterface ( Matrix< ZT > &  arg_u,
Matrix< ZT > &  arg_uinv_t,
int  flags 
)
inline

Member Function Documentation

◆ apply_transform() [1/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::apply_transform ( const Matrix< FT > &  transform,
int  src_base 
)
inline

◆ apply_transform() [2/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::apply_transform ( const Matrix< FT > &  transform,
int  src_base,
int  target_base 
)

Executes transformation by creating extra rows, Calculating new entries, swapping the new rows with previous ones, And then removing the excess rows

◆ b_row_is_zero()

template<class ZT , class FT >
virtual bool MatGSOInterface< ZT, FT >::b_row_is_zero ( int  i)
pure virtual

Returns true if the ith row of b is zero. In the gram version it returns true if g(i,i) is zero.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ babai() [1/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::babai ( vector< ZT > &  v,
int  start = 0,
int  dimension = -1 
)
virtual

Updatev to w s.t. ‖w⋅B - v⋅B^*‖ is small using Babai's nearest plane algorithm.

Parameters
va vector, both input and output
startonly consider subbasis starting at start
dimensiononly consider dimension vectors or all if -1

◆ babai() [2/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::babai ( vector< ZT > &  w,
const vector< FT > &  v,
int  start = 0,
int  dimension = 1 
)
virtual

Return vector w s.t. ‖w⋅B - v⋅B^*‖ is small using Babai's nearest plane algorithm.

Parameters
wa vector
va vector
startonly consider subbasis starting at start
dimensiononly consider dimension vectors or all if -1

◆ create_row()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::create_row
inline

Adds a zero row to b (and to u if enableTranform=true). One or several operations can be performed on this row with row_addmul(_we), then row_op_end must be called. Do not use if enable_inverse_transform=true.

◆ create_rows()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::create_rows ( int  n_new_rows)
pure virtual

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ discover_all_rows()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::discover_all_rows
inline

Allows row_addmul(_we) for all rows even if the GSO has never been computed.

◆ discover_row()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::discover_row ( )
protectedpure virtual

◆ dump_mu_d() [1/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::dump_mu_d ( double *  mu,
int  offset = 0,
int  block_size = -1 
)
inline

Dump mu matrix to parameter mu.

When a double pointer is provided the caller must ensure it can hold block_size^2 entries. When a vector is provided new entries are pushed to the end. In particular, existing entries are not overwritten or cleared.

Note
No row discovery or update is performed prior to dumping the matrix.

◆ dump_mu_d() [2/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::dump_mu_d ( vector< double >  mu,
int  offset = 0,
int  block_size = -1 
)
inline

◆ dump_r_d() [1/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::dump_r_d ( double *  r,
int  offset = 0,
int  block_size = -1 
)
inline

Dump r vector to parameter r.

When a double pointer is provided the caller must ensure it can hold block_size entries. When a vector is provided new entries are pushed to the end. In particular, existing entries are not overwritten or cleared.

Note
No row discovery or update is performed prior to dumping the matrix.

◆ dump_r_d() [2/2]

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::dump_r_d ( vector< double > &  r,
int  offset = 0,
int  block_size = -1 
)
inline

◆ get_cols_of_b()

template<class ZT , class FT >
virtual int MatGSOInterface< ZT, FT >::get_cols_of_b ( ) const
pure virtual

Returns number of columns of b. In the gram version it returns the number of columns of g.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ get_current_slope()

template<class ZT , class FT >
double MatGSOInterface< ZT, FT >::get_current_slope ( int  start_row,
int  stop_row 
)

Return slope of the curve fitted to the lengths of the vectors from start_row to stop_row.

The slope gives an indication of the quality of the basis.

Parameters
start_rowstart row (inclusive)
stop_rowstop row (exclusive)
Returns

◆ get_g_matrix()

template<class ZT , class FT >
const Matrix< ZT > & MatGSOInterface< ZT, FT >::get_g_matrix ( ) const
inline

Returns the g matrix (Z_NR version of r) Coefficients of the Gram Schmidt Orthogonalization (lower triangular matrix)

◆ get_gram()

template<class ZT , class FT >
virtual FT & MatGSOInterface< ZT, FT >::get_gram ( FT &  f,
int  i,
int  j 
)
pure virtual

Returns Gram matrix coefficients (0 <= i < n_known_rows and 0 <= j <= i). If enable_row_expo=false, returns the dot product (b[i], b[j]). If enable_row_expo=true, returns (b[i], b[j]) / 2 ^ (row_expo[i] + row_expo[j]).

Returns reference to f.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ get_int_gram()

template<class ZT , class FT >
virtual ZT & MatGSOInterface< ZT, FT >::get_int_gram ( ZT &  z,
int  i,
int  j 
)
pure virtual

Returns integer Gram matrix coefficients (0 <= i < n_known_rows and 0 <= j <= i). If (enable_int_gram = true), it returns the i,j-th coordinate of the Gram matrix else it computes the inner product of b_i and b_j Returns reference to z.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ get_log_det()

template<class ZT , class FT >
FT MatGSOInterface< ZT, FT >::get_log_det ( int  start_row,
int  end_row 
)

Return log of the (squared) determinant of the basis.

Parameters
start_rowstart row (inclusive)
end_rowstop row (exclusive)

◆ get_max_bstar()

template<class ZT , class FT >
FT MatGSOInterface< ZT, FT >::get_max_bstar
inline

Return maximum bstar_i for all i

◆ get_max_exp_of_b()

template<class ZT , class FT >
virtual long MatGSOInterface< ZT, FT >::get_max_exp_of_b ( )
pure virtual

Returns maximum exponent of b. In the gram version it returns a half times the maximum exponent of g.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ get_max_gram()

template<class ZT , class FT >
ZT MatGSOInterface< ZT, FT >::get_max_gram
inline

Return maximum bstar_i for all i

◆ get_max_mu_exp()

template<class ZT , class FT >
long MatGSOInterface< ZT, FT >::get_max_mu_exp ( int  i,
int  n_columns 
)

Returns expo such that mu(i, j) < 2^expo for all j < n_columns. It is assumed that mu(i, j) is valid for all j < n_columns.

◆ get_mu()

template<class ZT , class FT >
FT & MatGSOInterface< ZT, FT >::get_mu ( FT &  f,
int  i,
int  j 
)
inline

Returns f = (b_i, b*_j) / ||b*_j||^2.

Returns reference to f.

◆ get_mu_exp() [1/2]

template<class ZT , class FT >
const FT & MatGSOInterface< ZT, FT >::get_mu_exp ( int  i,
int  j 
) const
inline

◆ get_mu_exp() [2/2]

template<class ZT , class FT >
const FT & MatGSOInterface< ZT, FT >::get_mu_exp ( int  i,
int  j,
long &  expo 
) const
inline

Returns f = mu(i, j) and expo such that f * 2^expo = (b_i, b*_j) / ||b*_j||^2. If enable_row_expo=false, expo is always 0. If enable_row_expo=true, expo = row_expo[i] - row_expo[j] It is assumed that mu(i, j) is valid. The returned value is a reference to the coefficient of the internal matrix, which may change if the matrix is modified.

◆ get_mu_matrix()

template<class ZT , class FT >
const Matrix< FT > & MatGSOInterface< ZT, FT >::get_mu_matrix ( ) const
inline

Returns the mu matrix Coefficients of the Gram Schmidt Orthogonalization (lower triangular matrix) mu(i, j) = r(i, j) / ||b*_j||^2.

◆ get_r()

template<class ZT , class FT >
FT & MatGSOInterface< ZT, FT >::get_r ( FT &  f,
int  i,
int  j 
)
inline

Returns f = (b_i, b*_j).

Returns reference to f.

◆ get_r_exp() [1/2]

template<class ZT , class FT >
const FT & MatGSOInterface< ZT, FT >::get_r_exp ( int  i,
int  j 
) const
inline

◆ get_r_exp() [2/2]

template<class ZT , class FT >
const FT & MatGSOInterface< ZT, FT >::get_r_exp ( int  i,
int  j,
long &  expo 
) const
inline

Returns f = r(i, j) and expo such that (b_i, b*_j) = f * 2^expo. If enable_row_expo=false, expo is always 0. If enable_row_expo=true, expo = row_expo[i] + row_expo[j] If is assumed that r(i, j) is valid. The returned value is a reference to the coefficient of the internal matrix, which may change if the matrix is modified

◆ get_r_matrix()

template<class ZT , class FT >
const Matrix< FT > & MatGSOInterface< ZT, FT >::get_r_matrix ( ) const
inline

Returns the r matrix Coefficients of the Gram Schmidt Orthogonalization (lower triangular matrix)

◆ get_root_det()

template<class ZT , class FT >
FT MatGSOInterface< ZT, FT >::get_root_det ( int  start_row,
int  end_row 
)

Return (squared) root determinant of the basis.

Parameters
start_rowstart row (inclusive)
end_rowstop row (exclusive)

◆ get_rows_of_b()

template<class ZT , class FT >
virtual int MatGSOInterface< ZT, FT >::get_rows_of_b ( ) const
pure virtual

Returns number of rows of b. In the gram version it returns the number of of rows of g. This function is made to reduce code repetition (dump_mu/dump_r)

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ get_slide_potential()

template<class ZT , class FT >
FT MatGSOInterface< ZT, FT >::get_slide_potential ( int  start_row,
int  end_row,
int  block_size 
)

Return slide potential of the basis.

Parameters
start_rowstart row (inclusive)
end_rowstop row (exclusive)
block_sizeblock size

◆ invalidate_gram_row()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::invalidate_gram_row ( int  i)
protectedpure virtual

◆ invalidate_gso_row()

template<class ZT , class FT >
FPLLL_BEGIN_NAMESPACE void MatGSOInterface< ZT, FT >::invalidate_gso_row ( int  i,
int  new_valid_cols = 0 
)
inlineprotected

◆ lock_cols()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::lock_cols

Early reduction Allowed when enable_int_gram=false, n_known_cols large enough to compute all the g(i,j)

◆ move_row()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::move_row ( int  old_r,
int  new_r 
)
pure virtual

Row old_r becomes row new_r and intermediate rows are shifted. If new_r < old_r, then old_r must be < n_known_rows.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ negate_row_of_b()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::negate_row_of_b ( int  i)
pure virtual

Negates the ith row of b. Needed by dbkz_postprocessing.

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ print_mu_r_g()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::print_mu_r_g ( ostream &  os)
inline

Prints mu,r and g matrix to ostream os.

◆ remove_last_row()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::remove_last_row
inline

Removes the last row of b (and of u if enable_transform=true). Do not use if enable_inverse_transform=true.

◆ remove_last_rows()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::remove_last_rows ( int  n_removed_rows)
pure virtual

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ row_add()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::row_add ( int  i,
int  j 
)
pure virtual

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ row_addmul()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::row_addmul ( int  i,
int  j,
const FT &  x 
)
inlinevirtual

b[i] := b[i] + x * b[j]. After one or several calls to row_addmul, row_op_end must be called. Special cases |x| <= 1 and |x| <= LONG_MAX are optimized. x should be an integer. If row_op_force_long=true, x is always converted to (2^expo * long) instead of (2^expo * ZT), which is faster if ZT=mpz_t but might lead to a loss of precision (in LLL, more Babai iterations are needed).

◆ row_addmul_si()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::row_addmul_si ( int  i,
int  j,
long  x 
)
protectedpure virtual

◆ row_addmul_we()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::row_addmul_we ( int  i,
int  j,
const FT &  x,
long  expo_add 
)
pure virtual

b[i] := b[i] + x * 2^expo_add * b[j]. After one or several calls to row_addmul_we, row_op_end must be called. Special cases |x| <= 1 and |x| <= LONG_MAX are optimized. x should be an integer. If row_op_force_long=true, x is always converted to (2^expo * long) instead of (2^expo * ZT), which is faster if ZT=mpz_t but might lead to a loss of precision (in LLL, more Babai iterations are needed).

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ row_op_begin()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::row_op_begin ( int  first,
int  last 
)
inline

Must be called before a sequence of row_addmul(_we).

◆ row_op_end()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::row_op_end ( int  first,
int  last 
)

Must be called after a sequence of row_addmul(_we). This invalidates the i-th line of the GSO.

◆ row_sub()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::row_sub ( int  i,
int  j 
)
pure virtual

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ row_swap()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::row_swap ( int  i,
int  j 
)
pure virtual

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ set_r()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::set_r ( int  i,
int  j,
FT &  f 
)
inline

Sets the value of r(i, j). During the execution of LLL, some coefficients are computed by the algorithm. They are set directly to avoid double computation.

◆ size_increased()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::size_increased ( )
protectedpure virtual

Allocates matrices and arrays whose size depends on d (all but tmp_col_expo). When enable_int_gram=false, initializes bf.

◆ sqnorm_coordinates()

template<class ZT , class FT >
virtual ZT & MatGSOInterface< ZT, FT >::sqnorm_coordinates ( ZT &  sqnorm,
vector< ZT >  coordinates 
)
pure virtual

Basis of the lattice The next five functions make calls from lll.cpp and bkz.cpp indirect. Returns || sum_i x_i b_i ||^2 on vectorial input (x_i)_i in the Gram version, it returns x^T G x

Implemented in MatGSO< ZT, FT >, and MatGSOGram< ZT, FT >.

◆ sym_g()

template<class ZT , class FT >
ZT & MatGSOInterface< ZT, FT >::sym_g ( int  i,
int  j 
)
inlineprotected

◆ symmetrize_g()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::symmetrize_g
inline

◆ unlock_cols()

template<class ZT , class FT >
void MatGSOInterface< ZT, FT >::unlock_cols

◆ update_bf()

template<class ZT , class FT >
virtual void MatGSOInterface< ZT, FT >::update_bf ( int  i)
protectedpure virtual

◆ update_gso()

template<class ZT , class FT >
bool MatGSOInterface< ZT, FT >::update_gso
inline

Updates all GSO coefficients (mu and r).

◆ update_gso_row() [1/2]

template<class ZT , class FT >
bool MatGSOInterface< ZT, FT >::update_gso_row ( int  i)
inline

Updates r(i, j) and mu(i, j) if needed for all j. All coefficients of r and mu above the i-th row in columns [0, min(last_j, i - 1)] must be valid. If i=n_known_rows, n_known_rows is increased by one.

◆ update_gso_row() [2/2]

template<class ZT , class FT >
bool MatGSOInterface< ZT, FT >::update_gso_row ( int  i,
int  last_j 
)

Updates r(i, j) and mu(i, j) if needed for all j in [0, last_j]. All coefficients of r and mu above the i-th row in columns [0, min(last_j, i - 1)] must be valid. If i=n_known_rows, n_known_rows is increased by one.

Field Documentation

◆ alloc_dim

template<class ZT , class FT >
int MatGSOInterface< ZT, FT >::alloc_dim
protected

◆ bf

template<class ZT , class FT >
Matrix<FT> MatGSOInterface< ZT, FT >::bf
protected

◆ cols_locked

template<class ZT , class FT >
bool MatGSOInterface< ZT, FT >::cols_locked
protected

◆ d

template<class ZT , class FT >
int MatGSOInterface< ZT, FT >::d

Number of rows of b (dimension of the lattice). Can be changed with create_row or remove_last_row.

◆ enable_int_gram

template<class ZT , class FT >
const bool MatGSOInterface< ZT, FT >::enable_int_gram

Exact computation of dot products (i.e. with type ZT instead of FT)

◆ enable_inverse_transform

template<class ZT , class FT >
const bool MatGSOInterface< ZT, FT >::enable_inverse_transform

Computation of the inverse transform matrix (transposed). This works only if enable_transform=true. This matrix has very large coefficients, computing it is slow.

◆ enable_row_expo

template<class ZT , class FT >
const bool MatGSOInterface< ZT, FT >::enable_row_expo

Normalization of each row of b by a power of 2.

◆ enable_transform

template<class ZT , class FT >
const bool MatGSOInterface< ZT, FT >::enable_transform

Computation of the transform matrix.

◆ ftmp1

template<class ZT , class FT >
FT MatGSOInterface< ZT, FT >::ftmp1
protected

◆ ftmp2

template<class ZT , class FT >
FT MatGSOInterface< ZT, FT >::ftmp2
protected

◆ gf

template<class ZT , class FT >
Matrix<FT> MatGSOInterface< ZT, FT >::gf
protected

◆ gptr

template<class ZT , class FT >
Matrix<ZT>* MatGSOInterface< ZT, FT >::gptr

Replaced the gram matrix by a pointer. In the gso-class there is also a matrix g, and in the constructor gptr is defined to be equal to &g. In the ggso-class a gram matrix is given (arg_g), and gptr is defined as &arg_g.

◆ gso_valid_cols

template<class ZT , class FT >
vector<int> MatGSOInterface< ZT, FT >::gso_valid_cols
protected

◆ init_row_size

template<class ZT , class FT >
vector<int> MatGSOInterface< ZT, FT >::init_row_size
protected

◆ mu

template<class ZT , class FT >
Matrix<FT> MatGSOInterface< ZT, FT >::mu
protected

Coefficients of the Gram-Schmidt orthogonalization (lower triangular matrix).

If enable_row_expo=false, mu(i, j) = (b_i, b*_j) / ||b*_j||^2. If enable_row_expo=true, mu(i, j) = (b_i, b*_j) / ||b*_j||^2 / 2 ^ (row_expo[i] - row_expo[j]).

mu(i, j) is valid if 0 <= i < n_known_rows (<= d) and 0 <= j < min(gso_valid_cols[i], i)

◆ n_known_cols

template<class ZT , class FT >
int MatGSOInterface< ZT, FT >::n_known_cols
protected

◆ n_known_rows

template<class ZT , class FT >
int MatGSOInterface< ZT, FT >::n_known_rows
protected

◆ n_source_rows

template<class ZT , class FT >
int MatGSOInterface< ZT, FT >::n_source_rows
protected

◆ r

template<class ZT , class FT >
Matrix<FT> MatGSOInterface< ZT, FT >::r
protected

Coefficients of the Gram-Schmidt orthogonalization (lower triangular matrix).

If enable_row_expo=false, r(i, j) = (b_i, b*_j). If enable_row_expo=true, r(i, j) = (b_i, b*_j) / 2 ^ (row_expo[i] + row_expo[j]).

r(i, j) is valid if 0 <= i < n_known_rows (<= d) and 0 <= j < gso_valid_cols[i] (<= i + 1).

◆ row_expo

template<class ZT , class FT >
vector<long> MatGSOInterface< ZT, FT >::row_expo

When enable_row_expo=true, row_expo[i] is the smallest non-negative integer such that b(i, j) <= 2^row_expo[i] for all j. Otherwise this array is empty.

◆ row_op_force_long

template<class ZT , class FT >
const bool MatGSOInterface< ZT, FT >::row_op_force_long

Changes the behaviour of row_addmul(_we). See the description of row_addmul.

◆ tmp_col_expo

template<class ZT , class FT >
vector<long> MatGSOInterface< ZT, FT >::tmp_col_expo
protected

◆ u

template<class ZT , class FT >
Matrix<ZT>& MatGSOInterface< ZT, FT >::u
protected

◆ u_inv_t

template<class ZT , class FT >
Matrix<ZT>& MatGSOInterface< ZT, FT >::u_inv_t
protected

◆ ztmp1

template<class ZT , class FT >
ZT MatGSOInterface< ZT, FT >::ztmp1
protected

◆ ztmp2

template<class ZT , class FT >
ZT MatGSOInterface< ZT, FT >::ztmp2
protected

The documentation for this class was generated from the following files: